Electromagnetic Fundamentals $2^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 5

1 What is meant by the curl of a vector field ? Give an example to explain it

2 Compute the curl of the following vector fields
a) $\bar{F}=x y \bar{a}_{x}+2 y z \bar{a}_{y}-\bar{a}_{z}$
b) $\bar{F}=2 \bar{a}_{r}+\sin \phi \bar{a}_{\phi}-z \bar{a}_{z}$
c) $\bar{F}=r \bar{a}_{r}+\bar{a}_{\theta}+\sin \theta \bar{a}_{\phi}$

$$
\left[\begin{array}{c}
\nabla \times \bar{F}=-2 y \bar{a}_{x}-x \bar{a}_{z} \\
\nabla \times \bar{F}=\frac{1}{\rho} \sin \phi \bar{a}_{z} \\
\nabla \times \bar{F}=\frac{2 \cos \theta}{r} \bar{a}_{r}-\frac{\sin \theta}{r} \bar{a}_{\theta}+\frac{1}{r} \bar{a}_{\phi}
\end{array}\right]
$$

3 The flow vector for a fluid flowing in a cylindrical pipe of a unit inner radius is given by

$$
\bar{F}=\left[\frac{1-r}{1+r}\right] \bar{a}_{z}
$$

Determine the curl of \bar{F} at the axis and at the inner surface of the pipe. Sketch the profile of the curl over the pipe's cross section

$$
\left[\nabla \times \bar{F}=\frac{2}{(1+r)^{2}} \overline{\boldsymbol{a}}_{\phi}\right]
$$

4 Verify Stoke's theorem for a flat rectangular surface in the xy-plane bounded by [0,0,0] , [1,0,0] , [1, 1, 0] , [0,1,0] , when
a) $\bar{F}=2 \bar{a}_{x}+\bar{a}_{y}$
b) $\bar{F}=2 x y \bar{a}_{x}-y \bar{a}_{z}$

$$
\left[\begin{array}{c}
\oint \overline{\boldsymbol{F}} \cdot \overline{\boldsymbol{d}} \overline{\boldsymbol{l}}=\mathbf{0} \\
\oint \overline{\boldsymbol{F}} \cdot \overline{\boldsymbol{d}} \overline{\boldsymbol{l}}=-\mathbf{1}
\end{array}\right]
$$

5 Determine the circulation of $\bar{F}=\bar{a}_{r}+\bar{a}_{\theta}+\bar{a}_{\phi}$ where the surface is defined by $r=2,0 \leq \phi \leq \frac{\pi}{2}$ and $0 \leq \theta \leq \frac{\pi}{2}$. Then verify your result by using the curl

$$
[\oint \bar{F} \cdot \overline{d \boldsymbol{l}}=\pi]
$$

6 Verify the following vector identities by direct expansion in a coordinate system of your choice
a) $\nabla \times \nabla f=0$
b) $\nabla . \nabla \times \bar{F}=0$

7 Determine the circulation of the vector $\bar{F}=5 y \bar{a}_{x}+3 x \bar{a}_{y}-2 z \bar{a}_{z}$ around a closed contour from $(1,1,0)$ to $(1,4,0)$ to $(2,1,0)$, then verify Stoke's theorem .

$$
[\oint \bar{F} \cdot \overline{d l}=3]
$$

